Design of Low Voltage Low Power and Highly Efficient DC-DC Converters
نویسندگان
چکیده
In this thesis a predefined design parameters are used to present theoretical guidelines for design of low voltage, and low power DC-DC converter with high power efficiency and low levels of EMI (Electro-Magnetic Interference). This converter is used to alter the DC voltage supplied by the power source. Several DC-DC converters of different types and topologies are described and analyzed. Switched converter of buck topology is found to satisfy the design criteria most adequately and therefore is chosen as the solution for the task of the thesis. Three control schemes are analysed PWM (Pulse-Width Modulation), PFM (Phase-Frequency Modulation), and Sliding control. PWM is found to be most appropriate for implementation with this type of converter. Further, basic operation of the buck converter which includes two modes of operation CCM (Continuous-Conduction Mode) and DCM (Discontinuous-Conduction Mode) is described. Power losses associated with it are analysed as well. Finally several techniques for power conversion improvement are presented.
منابع مشابه
A High Efficiency Low-Voltage Soft Switching DC–DC Converter for Portable Applications
This paper presents a novel control method to improve the efficiency of low-voltage DC-DC converters at light loads. Pulse Width Modulation (PWM) converters have poor efficiencies at light loads, while pulse frequency modulation (PFM) control is more efficient for the same cases. Switching losses constitute a major portion of the total power loss at light loads. To decrease the switching losses...
متن کاملEfficient low-voltage ride-through nonlinear backstepping control strategy for PMSG-based wind turbine during the grid faults
This paper presents a new nonlinear backstepping controller for a direct-driven permanent magnet synchronous generator-based wind turbine, which is connected to the power system via back-to-back converters. The proposed controller deals with maximum power point tracking (MPPT) in normal condition and enhances the low-voltage ride-through (LVRT) capability in fault conditions. In this method, to...
متن کاملAn Interleaved Configuration of Modified KY Converter with High Conversion Ratio for Renewable Energy Applications; Design, Analysis and Implementation
In this paper, a new high efficiency, high step-up, non-isolated, interleaved DC-DC converter for renewable energy applications is presented. In the suggested topology, two modified step-up KY converters are interleaved to obtain a high conversion ratio without the use of coupled inductors. In comparison with the conventional interleaved DC-DC converters such as boost, buck-boost, SEPIC, ZETA a...
متن کاملPassivity-Based Control of the DC-DC Buck Converters in High-Power Applications
In this paper, a novel approach for control of the DC-DC buck converter in high-power and low-voltage applications is proposed. Designed method is developed according to passivity based controller which is able to stabilize output voltage in a wide range of operation. It is clear that in high-power applications, parasitic elements of the converter may become comparable with load value and hence...
متن کاملAnalysis of New Transformerless dc-dc Converter With High Voltage Gain
In some industries applications such as fuel cells, we must use a high voltage gain dc-dc converters for increasing voltage, but, the conventional converters cannot provide the high voltage gain with increasing duty cycle and the converters efficiency is limited by the equivalent series resistances. For this reason, in this paper, a single switch transformerless high step-up dc-dc converter wit...
متن کامل